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CALDERA-RELATED LAVA FLOWS AND INTRUSIONS OF THE SOUTH-CENTRAL SAN
JUAN MOUNTAINS, COLORADO--ANALYTICAL DATA

ABSTRACT

Petrographic, major-oxide, and trace-element data for voluminous Oligocene lava flows and associated
intrusions from the southern side of the central San Juan caldera cluster, Colorado, allow subdivision of these
postcaldera rocks: (1) volcanic rocks of South River Peak (mostly andesite and mafic dacite containing <63%
Si0,), spatially related to the newly recognized 27.2 Ma South River caldera (source of the Wason Park Tuff), and
(2) Fisher Quartz Latite (mostly silicic dacite: >63% SiO,), related to the 26.9 Ma Creede caldera (source of the
Snowshoe Mountain Tuff). The volcanic rocks of South River Peak, previously included with the Fisher Quartz
Latite, are separated because of their more mafic compositions and association with a seperate caldera cycle. In the
same region, slightly older andesite-dacite volcanics of Table Mountain (27.2-27.3 Ma) are chemically distinct from
the younger lavas, and these volcanics may represent post-collapse volcanism associated with the newly identified
Lake Humphreys caldera (source of the 27.3 Ma tuff of Blue Creek), or, alternatively, extracaldera volcanism prior
to formation of the South River caldera. The caldera-related lava flows are classified by reference to a total alkali
versus silica diagram, and sample locations are shown on an accompanying generalized geologic map (scale
1:50,000).

INTRODUCTION

Large volume ash-flow sheets and associated calderas near Creede in the central San Juan volcanic field,
Colorado, were initially described by Steven and Ratté (1965) and have been much studied since. Nevertheless,
stratigraphic and structural relations have been clarified only recently for several of the major ash-flow sheets,
associated flows, and source calderas (table 1), based on field mapping, petrologic study, 493%Ar geochronology,
and paleomagnetic data (Lipman and others, 1989; Lanphere, 1988; R. Reynolds and J. Rosenbaum, unpubl. data,
1989). For example, the source of the 27.2 Ma Wason Park Tuff, previously inferred to be concealed beneath the
Creede caldera (Ratté and Steven, 1967), has been shown to be the newly recognized South River caldera (Lipman
and others, 1989). Post-collapse lava flows related to the South River and Creede calderas in the southern part of
the central San Juan cluster (fig. 1) are the focus of the chemical data and brief interpretation reported here.

TABLE 1. ASH-FLOW TUFFS AND LAVAS OF THE CENTRAL SAN JUAN CALDERA CLUSTER
[Modified from Lipman and others, 1989;
4039 Ar ages from Lanphere, 1988 and Lanphere, unpublished data]

Tuff Unit Source caldera Age of Tuffs (Ma) Post-collapse lavas
Nelson Mountain San Luis caldera complex  26.1 Stewart Peak & Baldy Cinco
Rat Creek San Luis caldera complex  26.5 -

Snowshoe Mountain Creede 26.9 Fisher Quartz Latite

Wason Park South River 27.2 Volcanic rocks of South River
Blue Creek Lake Humphreys 273 Volcanics of Table Mountain?
Carpenter Ridge Bachelor 274 --

Fish Canyon La Garita 27.55 --

Masonic Park Mount Hope 28.3 Andesite of Sheep Mountain
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Figure 1. Map of the central San Juan caldera cluster showing location of geologic map included in (fig. 2) and
selected geographic features. Caldera margins are shown by hachured lines, stipple pattern shows intra-caldera
resurgent uplifts. Bar and ball symbol is on downdropped side of a ring fault related to Lake Humphreys caldera
eruption. Key to calderas: B, Bachelor; C, Creede; CP, Cochetopa Park; LG, La Garita; L, Lake Humphreys; MH
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Mount Hope; SL, San Luis; SR, South River. Modified after Lipman and others (1989 figure 3.2).



The 84 new major-oxide and trace-element chemical analyses (tables 2 and 3 respectively) are mainly for post-
collapse andesitic (53-63% Si0O,) and dacitic (63-70% SiO,) lava flows, mudflow deposits, and intrusions related to
the South River and Creede calderas. Table 4 provides rock type and sample locality information, and table 5
contains mineralogic data. Geochemical sampling was done while mapping the geology at 1:24,000- scale during
the summers of 1986-1989. Previously published mapping in this region is at 1:250,000- and 1:62,500- scales
(Steven and Lipman, 1973; Steven and others, 1974). Previous petrologic studies on andesites of this region have
been done by Askren and others (1988, 1989). A combined geologic and sample locality map at 1:50,000 scale (fig.
2) provides a context for the chemical data (tables 2 and 3). The chemical data are also compiled on a 5 1/4" floppy
disc in spreadsheet format and are included with this report. This file may be accessed by any program which
accepts spreadsheet files in the * WK1 format. Petrographic descriptions and chemical data compilation are by
Yager; geologic interpretation is by Lipman and Sawyer.

Much of the study area is relatively remote and rugged, and includes parts of the Rio Grande National Forest
and the Weminuche Wilderness. Topographic relief ranges from 2,653 meters elevation near the town of Creede,
Colorado, to 4,008 meters on the Continental Divide at South River Peak. Although established trails near Ivy,
Fisher, and Goose Creeks (fig. 2) provided access to the remote areas near South River Peak, back-country camps
were necessary to permit detailed geologic mapping and sampling.

GEOLOGIC SETTING

Igneous activity began in the San Juan volcanic field at about 35 Ma with eruption of intermediate-
composition lava flows and breccias of the Conejos Formation. These eruptions continued until 30 Ma when large
caldera-forming eruptions of ash flows began. Andesitic to rhyolitic lava flows erupted intermittently between the
caldera-forming eruptions, from vents commonly localized by caldera structures (table 1; fig. 2). Bimodal
volcanism (basalt and rhyolite) began at about 26 Ma and continued to 5 Ma, coincident with opening of the Rio
Grande rift (Lipman and others, 1970).

Eight major caldera-forming eruptions in the central San Juans (table 1) occurred 28.3 Ma - 26.1 Ma (Steven
and Ratté, 1965; Steven and Lipman, 1976; Lanphere, 1988; Lipman and others, 1989). Voluminous post-collapse
lavas along the south side of the central caldera cluster were previously mapped entirely as Fisher Quartz Latite and
interpreted as Creede caldera-fill (Steven and Lipman, 1973, 1976; Steven and others, 1974). These rocks are now
interpreted to be separable and related to formation of at least two calderas in the southern part of the cluster: the
volcanic rocks of South River Peak are spatially related to the recently recognized South River caldera that erupted
the Wason Park Tuff at 27.2 Ma, and the Fisher Quartz Latite, related to the Creede caldera that erupted Snowshoe
Mountain Tuff at 26.9 Ma, Lipman and others (1989).

The newly identified Lake Humphreys caldera, is the source of the tuff of Blue Creek, a discrete ash-flow
sheet only recently recognized as separate from the dacitic upper part (Mammoth Mountain member) of the
Carpenter Ridge Tuff (Lipman and Sawyer, 1988). Evidence for existence of the Lake Humphreys caldera includes
the intracaldera character of the tuff of Blue Creek in the Lake Humphreys area, and preservation of an arcuate ring
fault that drops the thick intracaldera tuff of Blue Creek down against early intermediate-composition lavas and
breccias of the Conejos Formation. The tuff of Blue Creek near Lake Humphreys has several characteristics of an
intracaldera assemblage: exceptional thickness (several hundred meters, with no base exposed), dense welding, and
propylitic alteration. Younger dacitic lava flows (Fisher Quartz Latite) unconformably overlie both the intracaldera
tuff of Blue Creek, rocks of the Conejos Formation, and the ring fault near Lake Humphreys. The earliest lava
flows in the study area, the volcanics of Table Mountain, may represent postcaldera volcanism related to the Lake
Humphreys caldera, or alternatively incipient volcanism related to development of the South River caldera.

CALDERA-RELATED LAVA FLOWS

Volcanics of Table Mountain

The volcanics of Table Mountain (Ttm) overlie the tuff of Blue Creek, previously included in the Mammoth
Mountain member of the Carpenter Ridge Tuff, and also predate the Wason Park Tuff (fig. 3) (Steven and Lipman,
1973). The volcanics of Table Mountain include lava flows, mudflow deposits, and small intrusions of fine-grained
andesite and porphyritic dacite (59-68% SiO,). Dominant phenocrysts are plagioclase and hornblende; some flows
also contain pyroxene or biotite.

The volcanics of Table Mountain are chemically distinct from post-collapse lavas related to both the South
River and Creede calderas. The Table Mountain lavas have lower potassium concentrations relative to total iron
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The volcanic rocks of South River Peak and volcanics of Table Mountain samples that plot outside field
boundaries are possibly due to alteration. Chemical distinctions between the Table Mountain and younger post-
collapse lavas are also seen in variation diagrams of rubidium versus strontium as well as potassium versus silica
and titanium versus silica.

The volcanics of Table Mountain are tentatively interpreted as representing post-caldera volcanism related to
the Lake Humphreys caldera, based on their stratigraphic position above the tuff of Blue Creek east of Table
Mountain, and their areal distribution proximal to the Lake Humphreys caldera. Alternatively, the volcanics of
Table Mountain could constitute incipient volcanism related to development of the South River caldera. A third
possibility is that the volcanics of Table Mountain record extracaldera volcanism, unrelated to any caldera. In
addition to the volcanics of Table Mountain, unnamed lava flows between the tuff of Blue Creek and the Wason
Park Tuff exposed in lower Goose Creek and Wagon Wheel Gap may also be part of post-collapse volcanism
related to the Lake Humphreys caldera.

Volcanic rocks of South River Peak

The South River caldera, associated with eruption of the Wason Park Tuff, is largely filled by andesitic to
mafic dacitic lava and mudflow deposits, here designated the volcanic rocks of South River Peak. The base of the
intracaldera lavas is not exposed, but they are at least 900 meters thick. Additional evidence for the South River
caldera includes the dense welding of outflow Wason Park Tuff beyond the South River caldera, and contact
relations at the South River caldera topographic wall. Lava flows within the caldera, belonging to the volcanic
rocks of South River Peak, lap against the older Carpenter Ridge Tuff, tuff of Blue Creek, and Wason Park Tuff
along a steep unconformity that defines the topographic wall of the South River caldera for almost 180° of arc, from
upper Red Mountain Creek eastward, along the Continental Divide, and into upper Goose Creek (fig. 2).

The volcanic rocks of South River Peak contain three dominant lithologies: 1) andesite, 2) homblende
andesite, and 3) mafic dacite (fig. 3). All lithologies are finely porphyritic and contain plagioclase averaging 2.5
mm in length.

The andesite unit consists of dark-gray, fine-grained lava flows, exposed mainly low in the stratigraphic
sequence of the volcanic rocks of South River Peak along the southern margin of the South River caldera. These
flows range from 56-61% in SiO, content and contain phenocrysts of plagioclase, clinopyroxene, +/- orthopyroxene,
+/- sparse homblende, and iron-titanium oxides.

Hornblende andesite is more silicic (59-62% SiO,), mostly lighter in color, and more coarsely porphyritic than
andesite. It contains more abundant and larger hornblende phenocrysts; hornblende predominates over pyroxene as
the dominant mafic mineral, and some flows also contain sparse biotite.

The mafic dacite flows crop out on Beautiful Mountain (fig. 1) and in Fisher Creek. They mostly occur high in
the stratigraphic sequence of the volcanic rocks of South River Peak and are compositionally transitional into the
overlying dacite of the Fisher Quartz Latite. Mafic dacite mostly ranges from 62-63% SiO,, although a few
andesite, as well as more silicic dacite, lava flows are interbedded in this unit. The phenocryst mineralogy of the
mafic dacites is similar to the homblende andesites, except that biotite is common.

In contrast with other calderas of the central San Juan cluster, there was no post-collapse resurgence of the
South River caldera. Except for the andesite (56-62% SiO,) and mafic dacite (62-63% SiO5) along the southern
margin, the South River caldera probably remained incompletely filled until after the Creede caldera formed. After
eruption of the Snowshoe Mountain Tuff, post-collapse dacite lavas of the Fisher Quartz Latite (Tf; mostly 63-68%
Si0,), filled the northern parts of the South River caldera.

Although lava flows of the volcanic rocks of South River Peak were erupted from vents along the south margin
of the South River caldera and are dominantly more mafic than younger lava flows of the Fisher Quartz Latite,
stratigraphic and petrologic relations among these two lava types are locally complex. Lava flows of the volcanic
rocks of South River Peak mostly dip toward the northeast from South River Peak, inward toward the center of the
caldera, and mostly underlie the more silicic lava flows of the Fisher Quartz Latite and breccias related to the
Creede caldera. Nevertheless, silicic dacite is locally present low in the sequence of the volcanic rocks of South
River Peak, and fine-grained andesite continued to be erupted within the South River caldera area (near South River
Peak) after formation of the Creede caldera. Silicic dacite lavas similar to the Fisher Quartz Latite are locally
present low in the Fisher and Ivy Creek drainages (fig. 2), and clasts of silicic dacite (>63% SiO,) in mudflow
deposits low in the South River Peak assemblage also document eruption of relatively evolved Fisher Quartz Latite-
type magma early during the South River caldera cycle. Conversely, outflow facies Snowshoe Mountain Tuff near
the south margin of the South River caldera (along the Continental Divide) is cut by an andesite dike and overlain



by several andesite lavas and interbedded mudflow deposits, providing evidence for the continued presence of
andesite magma beneath the South River caldera during the Creede caldera cycle.

Volcanic rocks on Beautiful Mountain (fig. 2) are chemically and petrographically transitional between the
volcanic rocks of South River Peak and Fisher Quartz Latite. In general, Beautiful Mountain rocks show
intermediate concentrations of rubidium with respect to strontium and are transitional to concentrations seen in
Fisher Quartz Latite (fig. 5). Also, strontium concentrations of Beautiful Mountain rocks have a similar range to
those in Fisher Quartz Latite (fig. 5). These rocks are included in the volcanic rocks of South River Peak because
(1) texturally they are similar, and (2) in the Beautiful Mountain area they underlie more coarsely porphyritic lavas
typical of Fisher Quartz Latite.

Intrusions of andesite and fine-grained diorite (Tsi) occur west and southwest of South River Peak and near
Goose Creek. The intrusive rocks include fine-grained, dark-gray dikes and larger irregular bodies of variable
texture that are interpreted as near-roof-level exposures of an arcuate ring intrusion along the south margin of the
South River caldera. These intrusions may be related to the South River caldera cycle, as indicated by local cross-
cutting relations with the Wason Park Tuff, by their distribution along the southwestern to southeastern margins of
the South River caldera, and by associated hydrothermal alteration that extends into the volcanic rocks of South
River Peak. The intrusive rocks are likely to be feeders for the volcanic rocks of South River Peak, because of their
similar mineralogy and chemistry. Larger intrusions near South River Peak and Goose Creek, and adjacent wall
rocks, are variably propylitically altered, silicified, and pyritized.

Fisher Quartz Latite

The topographic margins of the South River and younger Creede calderas overlap near Fisher Mountain
(fig.2), where they are buried by a 0.6-km-thick section of silicic dacite, previously mapped and named as Fisher
Quartz Latite. These lavas are inferred to have erupted along the ring fractures of the South River and Creede
calderas. Fisher Quartz Latite magmatism commenced after eruption of the Snowshoe Mountain Tuff; a few Fisher
Quartz Latite lava flows are domed by Creede caldera resurgence, and lava eruptions continued during deposition
of volcaniclastic lake sediments (Creede Formation, in the topographic moat of the Creede caldera). Some Fisher
Quartz Latite lava flows are as much as several hundred meters thick, where they ponded in the Creede caldera moat
or against the topographic wall of the caldera. The Creede caldera is strongly domed, and eruption of the Fisher
Quartz Latite may have been associated with magmatic resurgence of the caldera.

The Fisher Quartz Latite is generally more silicic and more coarsely porphyritic than the volcanic rocks of
South River Peak. Although dacites are volumetrically dominant, analyses of Fisher Quartz Latite lava flows vary
from 59-73% SiO,, averaging ~64.4% and including two andesite samples and one rhyolite sample. Phenocrysts
include plagioclase (averaging 3.5 mm long), hornblende, biotite, iron-titanium oxides, +/- pyroxene, +/- sanidine
(locally up to 4 cm and resorbed), +/- trace sphene, and +/- trace quartz.

Subtle chemical differences exist, especially in trace elements, between the volcanic rocks of South River Peak
and the Fisher Quartz Latite, in addition to the more silicic average compositions of the latter. Fisher Quartz Latite
generally has higher rubidium versus strontium than do the volcanic rocks of South River Peak (fig. 5), although,
there is overlap for the transitional Beautiful Mountain lava flows. One mudflow clast in the volcanic rocks of
South River Peak has a similar rubidium concentration to that seen in the Fisher Quartz Latite.

Volcanics of Point of Rocks

The volcanics of Point of Rocks consist of light-gray, flow-laminated, high-silica rhyolite (75% SiO,) that
occur as erosional remnants of a small lava dome complex on the northwestern margin of the Creede caldera
resurgent dome (Steven and Ratté, 1973). Phenocrysts include sanidine, plagioclase, biotite, and traces of quartz.
Rare-earth-element data show this unit to be transitional to the bimodal basalt - rhyolite episode of volcanism
(Hinsdale Formation) in the San Juan volcanic field (Lipman, 1987).

HINSDALE FORMATION (?)

Lava flows of xenocrystic basalt to dacite are probably correlative with the regionally distributed Hinsdale
Formation, and are the youngest volcanic unit in the study area, overlying lava flows of the Fisher Quartz Latite
along the ridge northeast of Beautiful Mountain (fig. 2). These lava flows contain small sparse phenocrysts of
plagioclase, augite, and oxidized homblende; xenocrysts of resorbed quartz are distinctive. None of the older
caldera-related lava flows contain resorbed quartz.
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CHEMICAL CLASSIFICATION OF THE VOLCANIC ROCKS OF SOUTH RIVER PEAK AND FISHER
QUARTZ LATITE
Based on the TUGS total alkali-silica classification of Le Bas and others, (1986), most volcanic rocks of South

River Peak plot in the trachyandesite field, whereas most Fisher Quartz Latite samples plot as trachydacites (fig. 6).
The most mafic Fisher Quartz Latite lava flows contain resorbed sanidine. Some volcanic rocks of South River
Peak are compositionally transitional into the Fisher Quartz Latite lava flows, especially the samples from Beautiful
Mountain, as noted previously. Although all these lava flows have alkaline affinities, they lack alkaline phenocryst
minerals such as sodic pyroxenes or amphiboles. Alternatively, based on the alkaline/sub-alkaline classification of
Irvine and Baragar (1971), all of the South River Peak and Fisher Quartz Latite lava flows are subalkaline (fig. 6).

ANALYTICAL METHODS
Wavelength dispersive X-ray fluorescence analyses (major oxides) were made at the U.S. Geological Survey,
Branch of Geochemistry in Denver. Energy dispersive X-ray fluorescence (EDXRF) trace-clement analyses were
made using the methods of Elsass and DuBray (1982) and of Quick and Haleby (1988). The two EDXRF methods
are comparable (J. Quick and D. Yager, unpublished data, 1988), and analytical precision of the Elsass and duBray
EDXREF technique is discussed in Sawyer and Sargent (1989).
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Table 4. Rock type and general sample locality for volcanic rocks discussed in this report. For precise
sample localities, see figure 2.

Field No.

Formation
Map Symbol

Rock Type And General Location

- o 2 > 2 o e 2 2 2 2 e S U A B A W s B A A A S S A A U W P W P O S U W W G W W W T T W o G

89L-112
89L~120
DYBI-6
DY89-10
DY89~11A
DY89~11B
DY89~12
DY89-14
DS89001
DsS89003
DS89004
DS89006
Ds89012
DS89014
DS89015
Ds89028
DYB89~7
DYs9-8
DYB89-9
DSB89016
DS89017
DS89019
DsS89029
DsS890130
DS89034
DS89035
88L~-32
88L~-34
88L-36
88L-61
89L~-129
88L-31A
88L~31B
8sL-31C
88L~58
88L-62A
88L-62B
88L-62C
88L~62D
88L-~62E
88L-65
88L-66
88L-70
89L~115
89L~-122
89L~123
89L~-128
89L-130
89L-135A
89L~135B
89L-143
89L-144

DYB89~-16
DY89-17
DY89-~18
DS89007
Ds89008
DS89009
0DS89010
89L~136
89L~137
89L~138
89L~140
89L~141
89L~147B
DY89~20
DY89-21
DY89~22
DY89-24
DY89-24B
DY89~25
DYB89~26
DY89~27

~Tsh
Tsa

Ttm

xenocrystic andesite flow, on ridge W. above head of
xenocrystic andesite flow, on ridge W. above Ivy Cree
xenocrystic andesite flow, W. above Red Mt. Creek
xenocrystic andesite on ridge between Ivy and Red Mt.
Xenocrystic dacite flow, W. of Ivy Ck.

High sllica rhyolite, Marshall Park campground
silicic dacite flow, at Wagon Wheel Gap

rhyolite flow, MccCall ck.

andesite flow, W. above Ivy Creek
mafic dacite flow, near trail on IVX ck.
silicic dacite flow, Lime Creek trall head
dacite flow, Fisher Creek trail

dacite flow, Ivy Ck. trail

dacite flow, bottom Ivy Ck.

dacite flow, on trail NE of Goose lake

mafic dacite flow, SW of Fisher Mt. summit
andesite flow?, SW of Fisher Mt. summit

mafic dacite flow, summit of Fisher Mt.

dacite flow, S. of Fisher Mt, summit

mafic dacite flow, W. Palo Alto Ck.

dacite flow, NW on Fisher Mt.

dacite intrusion?, NW on Fisher Mt.

dacite mudflow clast, W. of Fisher Ck.

mafic dacite flow, N. of Fisher Mt. summit

mafic dacite flow, S. of Fisher Mt. summit

mafic dacite flow, S. of Fisher Mt.

dacite clast, N. of upper Goose Creek

mafic dacite flow, lower Beautiful Mt.

mafic dacite flow, summit of Beaut. Mt.

mafic dacite flow, SW of summit on Beautiful Mt.
dacite flow, bottom of Fisher Ck.

andesite flow, S of Beaut. Mt.

andesite flow, S of Beaut. Mt,

andesite flow, E. ridge on Beaut. Mt.

andesite flow, E. ridge on Beaut. Mt,

dacite flow, N. Beaut. Mt.

mafic dacite, N. Beaut. Mt.

andesite dike, cutting Tmm S. of Pledra Pk.
andesite intrusion, at head of W. Fk. San Juan R.
andesite intrusion, on ridge crest NE of Piedra peak
andesite intrusion, E. of Piedra peak

andesite dike, E. of SR peak

andesite flow, on trail S. of SR peak

andesite flow, on trail S. of SR peak

andesite flow, on trail S. of SR peak

mafic dacite flow, capping Piedra Pk.

andesite flow, NW of SR peak

andesite flow, NW of SR peak

mafic dacite flow, NW of SR peak

mafic dacite flow, NW of SR peak

dacite, (slightly propylitized)

andesite flow, below SR peak summit

andesite flow, on ridge S. above head of Ivy Creek
andesite flow, W. above Red Mt. Creek

andesite flow, head of Ivy Ck.

andesite flow, near trail at Goose Lake

mafic dacite flow at Goose lake

andesite mudflow clast?, E. of SR peak

mafic dacite mudflow clast, E. of SR peak
andesite intrusion, Sawtooth trail

mafic dacite intrusion, upper Goose Ck.

dacite intrusion, upper Goose Ck.

mafic dacite intrusion, upper Goose Ck.

andesite flow, ridge SE of Goose lake

andesite flow, ridge SE of Goose lake

andesite flow, N. of Goose Ck

andesite flow, E. of Goose Lake

andesite flow, head of Fisher Ck SE of Goose lake
andesite flow, SE of Goose lake

andesite flow, SE of Fisher Ck.

andesite flow, S. of Goose Ck. near cont. divide
dacite flow, Cont. Divide

dacite intrusion, W. of Sawtooth Mt., Cont. Divide
silicic dacite flow, W. of Sawtooth Mt, Cont. Divide
silicic dacite flow, upper Goose Ck.

andesite intrusion, upper Goose Ck.

andesite flow, NW of Table Mt.

andesite flow, NW of Table Mt.

andesite intrusion feeding a flow?, W of Table Mt.
andesite flow, NE of Sawtooth Mt. summit

andesite flow, N. of Sawtooth Mt.

andesite flow, near base of Sawtooth Mt.

andesite flow, NE of Sawtooth Mt.

mafic dacite flow?, W. of Sawtooth Mt.
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Table 5. Mineralogic data for volcanic rocks discussed in this report. Mineral abbreviations used arc as
follows: pl=plagioclase, hb=hornblende, bt=biotite, cpx=clinopyroxene, opx=orthopyroxene,
px=pyroxene, sn=sanidine, and qtz=quartz.

Field No.

88L-67
88L-68
88L-69
89L-100
89L-118
TPR-3
85L-39
5J85-47
89L-101
89L-102
89L-107
89L-112
89L-120
DYB89-6
DY89-10
DY89-11A
DY89-11B
DY89-12
DY89-14
DS89001
DS89003
DS89004
DS89006
Ds8a012
DS89014
DS89015
Ds89028
DY89-7
DY89-8
DY89-9
DS89016
DS89017
DS89019
DS89029
DS89030
DS89034
DsS89035
88L-32
88L-14
88L-36
88L-61
89L-129
88L-31A
88L-318B
88L-31C
88L-58
88L-62A
88L-628B
88L-62C
88L-62D
88L-62E
8BL-65
88L-66
88L-70
89L-115
89L-122
89L-123
89L-128
89L-130
89L-135A
89L-1358
89L-143
89L-144
DY89-16
DY89-17
DY89-18
DS89007
DS89008
DS89009
DS89010
89L-136
89L-137
89L-138
89L-140
89L~-141
89L-147B
DY89-20
DY89-21
DYB89-22
DY89-24
DY89-248B
DY89-25
DY89-26
DY89-27

.

Formation
Map Symbol

Ttm
Ttm

Ttm

Mineralogy

hb, cpx, pl, gqtz-resorbed, opaques

hb, pl, cpx, gtz-resorbed, opagues

hb-altered, cpx & opx, quartz-embayed, copaques
hb-altered, cpx & opx, gqtz-embayed, opaques
hb-altered, cpx & opx, gqtz-embayed, opaques
pl,bt,sn?,trace gtz .

pl, hb, bt, sn, opaques (no thin section)

pl, hb, cpx & opx, opagues, sphene-trace

pl, hb, bt, opaques

pl, hb, bt, opaques

pl, hb, bt, cpx & opx?, opaques

pl, hb, bt, cpx, opaques

pl, hb, bt, resorbed sn-trace, opaques
pl,hb-altered, bt?, opaques, (mafics are altered)
pl, hb, bt, opaques

pl, hb, bt, cpx, sn-resorbed, opaques, sphene-trace
pl, hb, bt, cpx, sn-resorbed-trace, sphene, opaques
pl, hb, bt, cpx & opx, opaques

pl, hb, bt, opaques, sphene-trace

pl, hb, bt, sn-trace-resorbed, opaques

pl, bt, hb, gtz-resorbed, sn, opaques

pl, hb, bt, opaques

pl, hb-altered, bt-altered, sn-resorbed, opaques
pl, hb-altered, bt, cpx, sn-resorbed-trace, opaques
pl, hb-altered, opaques

pl, hb, opagues

pl, hb, bt, cpx, opaques

pl, hb-altered, cpx, bt-trace, opaques

pl, hb, bt, opaques

pl, hb-altered, bt, opaques

pl, cpx & opx, hb, altered, opaques

pl, hb-altered, cpx & opx, opaques

pl, hb, bt, cpx, opaques

pl, hb, bt, cpx & opx, (groundmass calcite alteration
pl, hb, bt, opaques

pl, hb, bt, opaques

pl,hb,px?, opaques CaCO3, alteration, mafics altered
pl, px, hb, opaques

pl, hb, px, opaques, qtz-trace

pl, hb, opx,cpx, opaques

pl, cpx & opx-trace, hb-trace, opaques (trapped melt?
pl, opx, cpx, hb-trace, opaques

pl, hb, px, opaques

pl, hb, px, opaques

pl,hb,px?,opaques,some feldspars are altered

pl, hb, bt, px?, opagues (no thin section)

pl, hb, biotite-trace, opaques

pl, hb, opagues (no thin section)
pl,hb,secondary gquartz and calcite alteration
pl,hb?,rock is slightly propylitized(no thin sect.)
pl, hb, cpx, opx-trace, opaques

pl, hb, bt, opaques

pl, cpx & opx, hb, opaques

pl, hb, bt, px-trace?, opaques

pl, hb, bt-trace, cpx-trace, opaques

pl, hb, cpx & opx, bt, opaques

pl, hb, cpx & opx, opaques

pl, hb, (opx & cpx)-trace amounts, opagues

pl, bt, px, opaques

pl, hb, opaques (mafics are altered)

pl-altered, hb-altered, opaques

pl-altered, hb-altered, bt, opaques

pl, hb, cpx & opx, opaques

pl, cpx & opx, hb, opaques

pl, hb, bt, cpx & opx, opaques

pl, hb-altered, bt?-altered, opaques

pl, hb, bt, opaques

pl, hb, cpx, opaques

pl, cpx & opx, opaques

pl, hb, opaques

pl, hb, opaques

pl,hb, bt-trace, opaques

pl, hb, bt, opaques

pl, hb, bt, gqtz, ogaques

pl,hb,bt trace, chlorite alteration

pl, cpx & opx, opaques

pl, cpx & opx, opaques

pl, opx & cpx, opaques

pl, hb, cpx & opx, opaques

pl, hb, cpx & opx, opaques

pl, cpx & opx, hb, opaques

pl, hb, cpx & opx, opagues

pl, hb, opaques
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